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Abstract

This paper investigates the role of learning in the use of agricultural tech-
nologies by smallholder farmers in low-income countries. I conduct a randomized
experiment in Bangladesh to show that a risk-reducing technology can lead farm-
ers to invest more in inputs such as fertilizer. Specifically, I use an alert system to
enable farmers to take precautionary measures against crop disease. The inter-
vention leads to higher yields as a result of increased investment. This outcome is
driven by farmers who learn over the course of the season that they are receiving
accurate alerts. This paper demonstrates how the effectiveness of an intervention
is determined by how rapidly people can learn about its efficacy.
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1 Introduction

Farmers in low-income countries produce significantly less with their land and labor

than farmers in high-income countries. This productivity gap has persisted over time

(Gollin, Lagakos, and Waugh 2014a, 2014b). One important contributor to this gap is

vulnerability to agricultural risk: the chance that the rains necessary to sustain farmers’

fields might come late, crop disease might strike, or infrastructural breakdowns might

prevent bringing a harvest to market. If these risks materialize, farmers not only

lose their crop, but also capital spent on complementary inputs, such as fertilizer and

labor. This is a reason why farmers are often reluctant to take up new technologies or

invest in complementary inputs (Jack 2013; Karlan et al. 2014; Donovan 2020).

An intervention that reduces agricultural risk can also increase the likelihood of

farmers investing more in technologies and complementary inputs. A well-studied ex-

ample of a risk-reducing intervention is index insurance. Index insurance offers farmers

a contract that pays out when remote sensing data indicates crop losses, such as when

a rainfall index indicates drought within a region. Despite its theoretical tractability,

demand for this insurance has been limited (Mobarak and Rosenzweig 2012; Cole et

al. 2013; Jensen, Barrett, and Mude 2016). Farmers are concerned about basis risk:

if they suffer a loss that is not reflected by the index, they do not receive a payout.

Attempts to scale index insurance have painted a stark picture: because farmers have

difficulty learning about their individual basis risk, they do not trust or want index

insurance, even at subsidized prices (Ahmed, McIntosh, and Sarris 2020).

This paper provides evidence on how a particular feature of a technology—whether

farmers can learn about its efficacy through use—affects use and investment. An ideal

risk-reduction technology for smallholder farmers is one that, like index insurance, can

be deployed with low administrative costs, but additionally admits opportunities for
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farmers to learn about the level of risk reduction the technology offers. Instead of

indemnifying a farmer after a loss, such a technology could minimize the likelihood of

a loss occurring.

I explore whether providing farmers with advanced warning about the risks they face

allows them to both mitigate their losses and increase their agricultural investments.

While weather risk is unavoidable, farmers can take action to mitigate other risks,

such as crop disease and pests, if given sufficient warning. Further, if farmers know

the risks they face, they can calibrate their investments appropriately, increasing their

investment in periods of low risk.

Specifically, I study how farmers cope with a virulent plant disease known as late

fungal blight. In Bangladesh, where my study takes place, blight poses a significant

risk to every potato farmer. In this region, losses to blight are high, ranging from

25-75% a year, leading to social upheaval, farmer suicide, and starvation (Fry 2016;

Dey et al. 2018). Farmers combat blight with fungicide, which is most effective when

applied before the onset of the disease. However, farmers cannot precisely anticipate

when blight will arrive, and so ex ante investments in labor and fertilizer are rendered

worthless if blight strikes.

Over the 2019-2020 growing season, I conducted a randomized control trial in north-

western Bangladesh with potato farmers in 410 villages. I used an alert system that

combines satellite and weather data to predict blight risk at a high geographic and tem-

poral resolution. The system sends messages to farmers’ cell-phones notifying them

when to spray their crops against blight. The alert system is designed to optimize when

farmers spray fungicide, informing them exactly when their crops are most vulnerable.

My study has two main findings. First, the alert system created a “crowd-in” effect,

where farmers who were sent alerts invested approximately 8% more in fertilizer, a

yield-increasing input, than those in the control group. As a result, yields increased by
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approximately 7%. Second, I find that the efficacy of the intervention is determined

by the ability of farmers to verify its accuracy. Before the start of the season, farmers

provided an expected sowing date which was used to calibrate the blight alert system.

However, many farmers planted two to three weeks later. The closer a farmer planted

to their registered date, the more accurate a signal they received. Farmers who noted

that the alerts accurately reflected the condition of their crops were the ones to invest

more; those noticing a mismatch invested less.

Many RCTs use information and communication technologies (ICT) to send alerts

and messages to induce farmers to adopt new technologies and invest more in their

crops (Aker 2011; Fafchamps and Minten 2012; Nakasone, Torero, and Minten 2014;

Aker, Ghosh, and Burrell 2016; Casaburi et al. 2019). This paper shows that harnessing

that same technology can motivate economically significant investment in response to

risk-reduction, which historically has been difficult due to issues of basis risk. While

the alert system shares the same technical basis risk as index insurance, it provides

multiple opportunities over the season for farmers to learn about their own specific

basis risk.

Further, where ICT interventions have been successful, it can be be difficult to

determine why—whether the information was salient or whether the alerts provided a

behavioral nudge irrespective of accuracy. In my paper, I not only show that the alert

system I used was effective at encouraging investment and increasing yields, but also

demonstrate the mechanism behind this. The alert system used in this RCT differs from

an insurance product because it tells farmers their risk before blight occurs, allowing

them to condition their investments in complementary inputs accordingly.

The rest of this paper is organized as follows. Section 2 describes the context of

the study and the disease. Section 3 describes the design of the RCT and provides

summary statistics on farms and farmers. Section 4 presents results, and 5 presents
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the mechanisms driving these results. Section 6 concludes.

2 Context

The district of Rangpur in northwestern Bangladesh is rural, agrarian, and poor. Small-

holder farmers in the district primarily grow rice, but some elect to cultivate potatoes

in the winter months separating rice seasons as a way of more intensively making use

of their land. Potatoes are a fast growing staple, valuable as a cash crop and as a

source of vitamins and calories. Potatoes are also susceptible to the plant pathogen

Phytophtera infestans, which causes late fungal blight. The pathogen first emerged

in the 1840s and became infamous for the devastation of crops in Europe leading to

the Irish potato famine.1 Even today, blight is regarded as one of the most dangerous

plant diseases, and continues to exact enormous losses on farmers worldwide (Haverkort

et al. 2008; Vleeshouwers et al. 2011; Fry et al. 2015; Kamoun et al. 2015). Average

losses of potatoes in Bangladesh are estimated to be high, between 25 and 57% of the

crop each year (Rahman et al. 2008; Hossain et al. 2010). In extreme cases, such as

the 2006-2007 season, 50 to 80% of all potato crops in Bangladesh were infected with

blight, resulting in severe yield losses across the country (Dey et al., 2010).

Blight is prevalent wherever potatoes are grown, appearing repeatedly over the

course of the growing season under cool, wet conditions. The spores of the disease

spread quickly through wind and water. Blight first infects the leaves of the potato

plant, moving down into the tuber, which will rot and deteriorate in the field. Left

untreated, blight can destroy an entire crop within a week of infection. The remedy for

1. The emergence of potato blight in the 1840s commanded an enormous amount of attention
from government bodies and the press. The progression of the disease throughout North America
and Europe was followed on the front page of newspapers as government commissions attempted to
convene committees to handle the outbreak (Berkeley 1846; Bourke 1964). Charles Darwin spent over
forty years studying the disease (Ristaino and Pfister 2016).
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blight is simple: an application of a prophylactic fungicide can prevent infection for a

period of three to five days. If a farmer’s application of fungicide correctly anticipates

blight, their losses can go to zero (Kamoun et al. 2015; Fry et al. 2015).

Farmers are aware of the risk blight poses to their crops, and regularly use fungicide,

but lack precise information over when to best apply it. If farmers spray when the risk

of blight infection is low, they pay for the fungicide but receive no benefit. If farmers

delay spraying when the risk of infection is high, then an uncontrolled outbreak of

blight can ruin their harvest. Farmers rely on their own experience, intuition, and

report seeking the advice of others to decide when to spray their crops. Crops planted

at the same time in the same location will be similarly vulnerable, so farmers can learn

from each other’s decisions.

Predicting periods of high blight risk is difficult. A common heuristic for high risk is

multi-day periods where temperatures lie between 50-60F and relative humidity exceeds

90%. However, this rule is only approximate, and small fluctuations in temperature or

humidity can significantly inhibit or accelerate the development of blight. A number of

systems have been developed in the United States, Europe, and elsewhere to forecast

blight at a high temporal and spatial resolution. These systems utilize a combination

of localized weather data, satellite imagery, and crop growth models to predict when

blight risk is high during a season, and send alerts to farmers telling them to spray

fungicide appropriately.2

For this RCT I use a blight forecast and alert service called GEOPOTATO that was

created by Wageningen University & Research, Netherlands. GEOPOTATO integrates

local weather station data with satellite imagery and a crop growth model to forecast

short-term blight risk on a week-to-week basis for each sub-district in Rangpur. The

2. Examples of modern blight forecast and alert systems include Akkerweb in the Netherlands,
Blightwatch in the United Kingdom, and USA Blight in the United States. Early efforts at blight
prediction and alert system start with Blitecast in the 1970s and continue into the present (Krause,
Massie, Hyre, et al. 1975; Fry 2016).
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GEOPOTATO system is built on two parallel models: one tracking the growth of the

potato crop and the other tracking conditions conducive to blight. The potato growth

model is initially calibrated using data on which local varietals farmers plant and their

sowing dates. The model is continuously updated throughout the season using satellite

data to estimate the susceptibility of the crops to blight. The blight model takes in

local weather station data to estimate the likelihood of a blight outbreak.

When GEOPOTATO estimates that local crops are susceptible and that blight risk

is high, it triggers an alert. The alert sends both an SMS and a voice message in the

local dialect to the relevant farmers, telling them that they should spray a prophylactic

fungicide within the next three days. Farmers can go to their village dealer to purchase

fungicide and apply it to their fields.

3 RCT Design and Farm and Farmer Characteristics

The district of Rangpur is divided into eight sub-districts (upazila), further divided

into seventy-six sub-sub-districts (unions), within which are individual villages. Ap-

proximately 41,000 potato farmers across Rangpur registered to receive GEOPOTATO

alerts for the 2019-2020 season, providing their location and expected sowing date prior

to the start of the season, which are used to calibrate the alerts.

The RCT is designed to test whether farmers who received alerts have better out-

comes—defined in terms of losses to blight, investment in fertilizer, and crop yields—than

farmers who did not receive alerts. A second question is whether there are spillover

effects between farmers within a village. Because the information in the alerts is clearly

non-rival, and farmers report basing their decision over when to spray their fields on

the actions of their neighbors, I can test whether a farmer who does not directly re-

ceive alerts, but is in the same village as those receiving alerts, realizes fewer losses
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and increases their investment in fertilizer.

From the population of the 41,000 farmers who wanted access to GEOPOTATO

alerts, I took a random sample of 410 villages, assigning villages to the control group,

where no-one would receive alerts, the treatment group, where all surveyed farmers

would receive alerts, and a spillover group, where approximately 50% of the surveyed

farmers would receive alerts. Treatment assignment is stratified at the sub-district

(upazila) and sub-sub-district (union) level, and table 1 shows the number of villages

and farmers by assignment. Data was gathered in two survey waves, an initial baseline

at the start of the season to collect farmer demographic characteristics, and an endline

following harvest to record data on farmer outcomes.

Table 1: Number of villages and farmers by treatment assignment

Direct Alerts Spillover Control

Villages 217 131 178
Farmers 710 429 848

The majority of farmers registering for GEOPOTATO alerts are commercially ori-

ented smallholders. The average farmer in the sample is male, nearly forty, has at

least attended primary school, and has grown potatoes for over a decade. Farmer

demographics are presented in table 2. Farmers observed cool, rainy weather through-

out the season, with an average of 25 days of weather conducive to the spread of

blight—with temperatures between 12 and 25C and humidity over 85%. There are no

statistically significant differences in observable characteristics between farmers in the

treatment, spillover, and control groups, as shown in the forth column of table 2 with

adjusted false discovery rate q-values.

Farmers devoted an average of approximately one acre of land to growing potatoes

between their rice harvests.3 Farmers planted in late fall and early winter of 2019, and

3. Smallholder farmers are generally defined as owning five or fewer acres of land. Smallholder
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Figure 1: Distribution of Sowing and Harvest Dates by Treatment Assignment

Notes: Farmers reported harvest dates at the endline survey and the number of
growing days for their crop. The average farmer sowed their crop in mid December
2019 and harvested in early March 2020.
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harvested into early April of 2020. The distribution of sowing and harvest dates is

shown in figure 1. Successfully cultivating potatoes requires inputs of labor, fertilizer,

and fungicide. Almost all farmers use fertilizer, spending an average of approximately

$200 USD (17,000 taka) an acre, which they apply in a sequence of four applications

that stretch throughout the growing season. Fertilizer increases a farmer’s yield so

long as they do not lose their crops to blight or other shocks. As shown in figure 2d,

almost all farmers invest in fertilizer to prepare their land prior to the start of the

season. Investment decreases significantly as the season progresses, with an increasing

number of farmers choosing to invest nothing in fertilizer in subsequent rounds. The

vast majority of farmers hire labor, an average of 50 people during the season to help

with land preparation, intraseasonal cropping activities, and the harvest. Fungicide

is also used extensively, an average of $115 USD (9,700 taka) an acre. Farmers spray

fungicide an average of 8-9 times over the course of the season. Input usage increases

linearly in farmland size, shown in figure 2.

Farmers grow potatoes with the aim of selling them at the end of the season, where

the average farmer who reported a sale realized estimated profits of $780 USD (66,000

taka). Nearly 20% of farmers did not report selling their crop, either deciding to

consume their harvest or to keep it in cold storage until later in the year in the hope

of getting a higher price. To accommodate the farmers reporting zero hired labor,

fertilizer, or fungicide expenditure, the inverse hyperbolic sine transformation is used

instead of a logarithmic transformation, but which can be interpreted equivalently

(Bellemare and Wichman 2020).

Farmers reported the fraction of each harvest lost to blight on an ordinal scale as

“almost no loss,” comprising 0-5% of their crop, “a little” (5-10%), “some” (10-25%),

“half” (25-50%), “most” 50-75%, and catastrophically “all” 75-100%. Reported losses

farmers operate an estimated 40% of the agricultural area in low-income countries (Lowder, Skoet,
and Raney 2016).
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Figure 2: Farm Input Usage

Notes: Points represent individual farmers, and the line is a linear best fit of
input expenditure over land. Farmers measure their land in decimals, where
100 decimals ≈ 1 acre. Labor is measured as the total number of people hired
throughout the season, and fertilizer and fungicide are measured by expenditures
in taka. Input use increases linearally with farmland.
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Table 2: Farmer Demographics

Treatment Status

Variable Control Spillover Direct p-value q-value

Age 39 (10) 39 (10) 38 (10) 0.5 0.9
Years farmed potatoes 12 (7) 12 (7) 12 (8) 0.4 0.9
Household members (N) 7.4 (3.7) 7.5 (3.7) 7.3 (3.7) 0.8 0.9
Female 0.6% 1.0% 0.8% 0.7 0.9

Education
No formal education 9.4% 9.6% 11%
Primary school 23% 27% 22%
Secondary school 48% 45% 45%
Above secondary school 20% 19% 22%

Potato cropland (acres) 1.06 (1.61) 1.08 (1.34) 1.02 (1.12) 0.7 0.9
Hot weather days (> 30C) 1.79 (3.22) 1.76 (3.40) 1.74 (3.43) >0.9 >0.9
Total rainfall (mm) 409 (130) 414 (139) 408 (150) 0.8 0.9
Blight risk days 25.1 (6.0) 26.1 (6.1) 25.3 (6.7) 0.025 0.2

N 848 419 710
1 Sample averages, standard deviation in parentheses.
2 p-value calculated with one-way ANOVA.
3 q-values with false discovery rate correction for multiple testing.
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by treatment status are shown in figure 3.
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Figure 3: Distribution of Reported Losses to Blight

Notes: Farmers reported losses to blight on an ordinal scale from “almost none
(0-5%)” to effectively “All (75-100%).” The height of each bar represents the
proportion of farmers in the control, spillover, and treatment group reporting
that level of loss.

3.1 Definining Treatment

The GEOPOTATO system sent out text and voice alerts when it predicted a high risk

of blight. The alerts advise farmers to spray fungicide within the next three days to

prevent blight infection. Farmers in the treatment group were sent between one to ten

alerts over the course of the season. Alerts were calibrated by the farmer’s planting

week (cohort) and their sub-district (upazila). Following the harvest, farmers assigned
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Figure 4: Number of alerts by treatment assignment

Notes: Alerts defined at the harvest level for farmers assigned to the treatment
and control groups. Alerts were only sent out to those farmers assigned to directly
receive alerts.

to directly receive alerts were asked whether they had actually received alerts, and if so,

whether they had complied with them. Not everyone in the treatment group reported

receipt; 14% of the farmers reported not receiving any alerts. Reasons for non-receipt

may include the farmer’s phone being off when the alerts were sent, out of a cellphone

service area, other technical issues with the phone, or another family member using

the phone and not reporting the alert to the farmer. A further 14% of farmers who

reported receiving the alerts also reported that they had not complied with them, that

they did not spray fungicide within the recommended three-day window.
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The receipt of alerts is clearly an important condition for their efficacy. However,

receipt may be endogenous to farmer concerns over blight and their effort to safeguard

their crop. Where non-compliance in a RCT typically means that the participant does

not take up the proposed technology, farmers self-reporting non-compliance with the

alerts did use fungicide, just not at the advised times. If the benefit of the alerts is

in allowing farmers to optimize when they spray fungicide, then compliance is crucial.

However, if many farmers used the alert system as a backstop against catastrophic loss,

then adherence to the alerts may not matter for farmers facing either low or as-expected

blight risk.

Farmers directly receiving alerts may notify others in their village to spray fungicide.

Even if they keep the alerts private, other farmers can still observe them spraying their

fields. Because blight is a communicable disease, even a subset of better protected fields

could reduce the overall spread of blight within a village. This may lead to farmers

who are not direct recipients of the alerts to benefit, subsequently reducing their losses

and increasing their investment in fertilizer and yields. However, because the alerts

are calibrated to each farmers’ sowing date, they would not necessarily be relevant to

a neighbor who had planted their crops at a different time.

4 Outcomes

Outcomes of interest for farmer i in village j located within sub-district (upazila) ν

who sowed their crops on date t include their losses to blight; the amount spent on

inputs: fertilizer, fungicide, and labor; and the amount of potatoes harvested. In the

empirical regression specification, equation 1, the effect of assigning a farmer to receive

GEOPOTATO alerts is given by τ , and a set of farmer-level demographic control

variables are included in x. I include a time trend ψ to account for the change in
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growing conditions over the season, and sub-district level fixed effects, θ to control for

unobserved variation at that level. Standard errors are clustered at the village level.

yitjν = τ (treatmenti) + βxij + θν + ψt + εijν (1)

Beyond assignment to treatment, the additional effect of receipt and compliance

with GEOPOTATO alerts is also of interest. However, because both receipt and com-

pliance may be endogenous to farmer concern over blight and their skill at farming. I

can instrument for these outcomes using the initial assignment to treatment, shown in

equation 2.

receiptijtν = κ1 (treatmenti) + βxij + θν + ψt + εi

complianceijtν = κ2 (treatmenti) + βxij + θν + ψt + εi

(2)

4.1 Reduced Losses to Blight

Farmers assigned to receive alerts reported fewer losses than those in the spillover or

control groups, but this effect is imprecise, and the difference was not statistically sig-

nificant. Conditioning on self-reported receipt and compliance increases the magnitude

of the point estimate. Farmers reporting compliance with the alerts, spraying when ad-

vised to do so, did experience significantly lower losses. The reason why the treatment

effect on losses is imprecise is explored further in section 5, which examines the accu-

racy of the alerts. Interestingly, the farmers who reported receipt but not compliance

showed higher losses. There do not appear to be any significant spillover effects for

farmers not directly assigned alerts, but living in villages where others were assigned

to receive them. Losses are positively correlated with the number of times a farmer

sprays, which is endogenous to periods of high blight risk. More experienced farm-
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ers realized fewer losses, while the farmer’s gender and education did not significantly

correlate with losses.

Figure 5 shows the estimated marginal treatment effect of GEOPOTATO from

the second column of table 3 at the sample means, with the predicted probability of

reporting harvest losses in each category for farmers in the treatment, spillover, and

control groups. Assignment to receive alerts shifts probability mass from higher loss

categories to “almost none.”

4.2 Inputs and Investment

Farmers optimize across a small set of inputs: the number of people they hire to work

on the farm and their total expenditures on fertilizer and fungicide. The intent-to-

treat effect on input use is estimated with a linear model in table 4. While labor use is

unaffected, expenditure on fertilizer increases by approximately 8% for farmers assigned

to directly receive GEOPOTATO alerts. Farmers, facing less risk and uncertainty over

their potential losses to blight, chose to invest more heavily in their production.

The effect of the GEOPOTATO alerts on fungicide usage is theoretically ambiguous.

The alerts could reduce expenditures for farmers who faced less blight risk than they

would have otherwise expected; they could increase expenditures for farmers facing

higher-than-expected blight risk. The alerts could also have no effect on expenditure,

where farmers would spend the same amount, but spray at times more closely preceding

periods of high blight risk. GEOPOTATO estimates of blight risk, the closest to an

objective measure of blight over the 2019-2020 season, are shown in figure 4. The figure

shows the number of alerts generated for each farmer, regardless of their assignment

to treatment. Zero to one alerts suggests minimal risk from blight over that farmer’s

crop cycle, where twelve alerts is the maximum the system could send out, indicating

a high risk of infection. Most farmers planted their crops over a three week period
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Table 3: Effect of GEOPOTATO on self-reported losses to blight

Dep. Var = Losses to blight (ordinal scale)

ITT ITT Receipt Compliance

GEOPOTATO

Assigned −0.14 −0.14
(0.10) (0.10)

Received −0.17
(0.11)

Complied −0.25∗∗

(0.11)
Didn’t comply 0.38∗

(0.21)
Spillover 0.09 0.07 0.06 0.06

(0.12) (0.12) (0.11) (0.11)
Fungicide (N sprays) 0.72∗∗∗ 0.71∗∗∗ 0.71∗∗∗ 0.72∗∗∗

(0.11) (0.12) (0.12) (0.11)
Land (ln dec) −0.15∗∗∗ −0.15∗∗∗ −0.15∗∗∗ −0.15∗∗∗

(0.05) (0.05) (0.05) (0.05)
Female 0.42 0.40 0.43

(0.52) (0.52) (0.52)
Experience (ln years) −0.18∗∗ −0.18∗∗ −0.17∗∗

(0.07) (0.07) (0.08)
No schooling 0.21 0.20 0.20

(0.15) (0.15) (0.15)

Upazila FE Yes Yes Yes Yes
Seasonal Trend Yes Yes Yes Yes
Observations 1972 1953 1953 1953

Cluster robust standard errors at the village level (G = 407).
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Figure 5: Estimated probability of losses to blight by treatment status

Notes: Predicted from the ordinal logit model in table 3 at the sample means of
a farmer with 12 years of experience sowing 1 acre of land in mid-December, and
spraying fungicide 8 times over the course of the season.
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Table 4: Intent to treat effect of alerts on input usage

Fungicide (asinh taka) Fertilizer (asinh taka) Labor (asinh N)

(1) (2) (3) (4) (5) (6)

GEOPOTATO

Assigned 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗ −0.01 −0.00
(0.03) (0.03) (0.03) (0.03) (0.04) (0.04)

Spillover −0.00 0.01 0.01 0.00 0.04 0.05
(0.04) (0.04) (0.03) (0.03) (0.05) (0.05)

Land (ln acres) 0.86∗∗∗ 0.86∗∗∗ 0.96∗∗∗ 0.96∗∗∗ 1.22∗∗∗ 1.21∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)
Female −0.19 0.08 −0.45∗∗

(0.15) (0.16) (0.23)
Experience (ln years) 0.02 0.01 0.05∗

(0.02) (0.02) (0.03)
No schooling −0.03 −0.01 −0.11

(0.05) (0.04) (0.07)

Upazila FE Yes Yes Yes Yes Yes Yes
Seasonal trend Yes Yes Yes Yes Yes Yes
Adj. R2 0.71 0.71 0.78 0.78 0.69 0.69
Observations 1977 1958 1977 1958 1977 1958

Cluster robust standard errors at the village level (G = 407).
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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between late November and early December, which coincided with high levels of blight

pressure. Consequently, there was relatively little variation in the amount of risk that

farmers faced.

The results in table 4 show that both expenditures and the number of fungicide

sprays increased by approximately 8% for farmers assigned to receive alerts. The

increase may represent a riskier-than-expected season, a use of more expensive and

higher quality fungicides if the farmer knew that the application was well-timed, an

increase in the salience of spraying fungicide for the farmer, or a combination of all

three. Despite the potential for information to flow between farmers within the same

village, there do not appear to be any robust spillover effects. Farmers in villages where

others are receiving alerts do not appear to modify their input usage or to report lower

crop losses. Due to the lack of a first-stage effect, I combine the farmers in the spillover

and control groups.

4.3 Yields

Yields were likely to increase for farmers assigned to receive GEOPOTATO alerts, as

they invested more in fertilizer and realized marginally fewer losses. The treatment

effect of GEOPOTATO can be parsed as an intent to treat (assignment), an average

treatment effect (receipt), or treatment on the treated (compliance). Because reported

compliance may be endogenous to farmer characteristics, I instrument for this using

the initial assignment to receive alerts shown in equation 2. The treatment effect of

GEOPOTATO on yields is reported in table 5, which leads to an estimated increase

of yields of 5-9%. Conditioning on self-reported receipt and compliance increases the

magnitude of the point estimate, the estimates are not significantly different from the

intent to treat. Instrumenting for compliance and receipt increase the standard errors

of the estimate, and is consistent with the OLS estimate.
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Table 5: Effect of GEOPOTATO on Production (arcsinh kg potatoes)

ITT ATE TOT

(1) (2) (3) (4) IV

GEOPOTATO

Assigned 0.05∗

(0.03)
Received 0.07∗∗

(0.03)
Complied 0.09∗∗∗ 0.08∗∗∗ 0.07∗

(0.03) (0.03) (0.04)
Land (ln acres) 1.10∗∗∗ 1.10∗∗∗ 1.10∗∗∗ 1.10∗∗∗ 1.10∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
Female 0.13

(0.12)
Experience (ln years) 0.04

(0.03)
No schooling −0.04

(0.05)

Upazila FE Yes Yes Yes Yes Yes
Seasonal trend Yes Yes Yes Yes Yes
Adj. R2 0.76 0.76 0.76 0.78 0.76
Observations 1977 1977 1977 1958 1977

Output measured in arcsinh kilograms.
Standard errors clustered at the village level (G = 407).
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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5 Accuracy of Alerts and Rational Compliance

Non-compliance with interventions in RCTs poses more than just a problem in terms

of the estimation of treatment effects—there may be participant-level heterogeneity

that is crucial to determining compliance, and which can explain much about the

intervention’s real world efficacy (Barrett and Carter 2010; Athey and Imbens 2017).

In many agricultural interventions we can observe non-compliance, for example where

farmers either choose not to adopt or actively disadopt a new technology, but often

we do not know why (Emerick et al. 2016; Maertens, Michelson, and Nourani 2020).

Similarly, many interventions that employ information and communication technologies

to send alerts and advice to farmers can recover an intent to treat effect, but cannot

explain why these alerts are effective (Fabregas, Kremer, and Schilbach 2019).

This study provides an opportunity to understand the causal mechanism behind

why farmers complied with the GEOPOTATO alerts, and how this produced an effect

in terms of losses to blight and investment in fertilizer. GEOPOTATO was not de-

signed to convince farmers to use fungicide to combat blight; they already were, and in

significant quantities. The goal was to improve on farmers’ baseline understanding of

when to spray fungicide, which could reduce their risk and increase their investment.

However, the GEOPOTATO alert system suffers from the same inherent basis risk

as index insurance: the remote data used in the system may fail to reflect conditions

on each farmer’s plot of land. GEOPOTATO alerts can fail in two separate ways:

the system may alert the farmer to spray fungicide when the risk of blight is actually

low, and the system may fail to alert the farmer to spray when the risk of blight is

actually high, type I and II errors, respectively. While type I errors are not easily

observed, farmers may notice type II errors in the form of blight in their fields with no

corresponding alert.
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By observing false negatives, disease but no alert, farmers can learn whether the

alerts are accurate for them. I test this using variation in predicted sowing date (which

defines alerts) and actual sowing date (which defines true blight risk). Before the

start of the season farmers registered a sowing date with the GEOPOTATO system.

Many farmers however, did not plant on the date they registered. Figure 6 shows the

distribution of the deviation between registered and actual sowing dates for farmers

assigned to directly receive alerts, spillover, or control groups. On average farmers

planted 20 days later than they registered.4 The alerts would be increasingly mistimed

for farmers whose sowing dates differed significantly from the ones they registered.

This deviation in registered versus actual sowing date provides an instrument for the

underlying accuracy of the alert system.

After the harvest, farmers reported whether or not they had observed false nega-

tives: whether they had found blight in their fields and not received an alert.5 The

likelihood of a farmer reporting a false negative increases with the absolute deviation

from their registered sowing date. Figure 7 shows that the further the actual sowing

date was from the one they had registered, the more likely farmers were to report false

negatives. Sowing within twenty days of the registered date produces a false negative

rate of approximately 25%, this increases to nearly 100% as farmers sow at dates further

from their registered date and the alerts become correspondingly more irrelevant.

By interacting the assignment to receive alerts with the absolute number of days

between their registered and actual sowing dates, I find that the alerts were effective

in reducing losses—but only for farmers receiving accurate signals. Table 6 shows the

effect of accurate signals on realized losses. Assignment to receive GEOPOTATO alerts

becomes increasingly less effective at reducing losses the further the farmer sows from

4. Farmers were asked at the endline survey when they had harvested their crop and then how
many days it had grown for, allowing the calculation of their actual planting date.

5. Specifically, farmers were asked: “This season did you find blight on your potatoes when you
hadn’t received a GEOPOTATO alert?”
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Figure 6: Deviation Between Actual vs. Registered Sowing Dates

Notes: Distribution of the deviation from registered sowing date and the sow-
ing date calculated at the endline. Points represent the average deviation by
assignment to treatment.
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Figure 7: Percent of farmers reporting false negatives

Notes: Dashed lines show the empirical distribution of sowing date deviations.
Reports of false negatives from farmers assigned to and reporting receipt of
GEOPOTATO alerts. The line shows a linear best fit with a 95% confidence
interval. The baseline incidence of false negatives is approximately 25%, which
increases to 100% the further a farmer plants from their registered sowing date.
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their registered date. The estimated effect of alerts on losses by the divergence between

the farmers registered and actual sowing date is shown in figure 8. Accordingly, the

second and third columns in table 6 show that losses are only lower for farmers that

receive GEOPOTATO but do not report observing false negatives.

Table 6: Effect of GEOPOTATO Accuracy on Losses to Blight

Dep. Var = Losses to blight (ordinal)

(1) (2) (3)

GEOPOTATO

Assigned −0.40∗∗

(0.16)
GEOPOTATO × divergence 0.01∗∗

(0.00)
Accurate signal −0.46∗∗∗ −0.47∗∗∗

(0.14) (0.14)
Inaccurate signal 0.17 0.17

(0.14) (0.14)
Spillover alerts 0.09 0.09 0.09

(0.12) (0.11) (0.12)
Fungicide (N sprays) 0.73∗∗∗ 0.73∗∗∗ 0.74∗∗∗

(0.12) (0.12) (0.12)
Land (ln dec) −0.15∗∗∗ −0.14∗∗∗ −0.14∗∗∗

(0.05) (0.05) (0.05)

Accurate = Inaccurate Signal (p-value) < 0.01 < 0.01
Upazila FE Yes Yes Yes
Seasonal Trend Yes Yes Yes
Observations 1972 1972 1970

Cluster robust standard errors at the village level (G = 407).
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

Farmers can adjust their investment in fertilizer for their crops during the growing

season as they observe and evaluate the accuracy of the GEOPOTATO alerts. If the

risk of blight limits investment, then only farmers who learn that they are receiving

accurate alerts should invest more. Farmers apply fertilizer in four rounds: an initial

preparation phase prior to planting, and then a second, third, and fourth application
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Figure 8: Effect of GEOPOTATO by deviation from reported sowing date

Notes: Estimated at the empirical means from model (1) in table 6. The average
absolute deviation from the registered sowing among farmers assigned to receive
GEOPOTATO was 23 days.
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as the potatoes grow. Farmers may not significantly modify their investment in the

initial rounds, but those who receive accurate alerts may increase their investment in

the later rounds of fertilizer application.

Because the self-report of receiving alerts and observing false negatives may be en-

dogenous to farmer skill and demographic characteristics, or their concern over blight,

I instrument for a farmer receiving GEOPOTATO alerts and reporting a false nega-

tive by their assignment to receive alerts interacted with the divergence between their

reported and registered sowing date in equation 3.

false negativeijtν = η1 (GEOPOTATO assignedi) + η2 (abs(days diverged)i)

+ η3 (GEOPOTATO assignedi × abs(days diverged)i)

+ βxi + θν + ψt + εi

no false negativeijtν = η4 (GEOPOTATO assignedi) + η5 (abs(days diverged)i)

+ η6 (GEOPOTATO assigned× abs(days diverged)i)

+ βxi + θν + ψt + εi

yitjν = ̂false negativei + ̂no false negativei + βxi + θν + ψt + εijν

(3)

Table 7 shows the effect of accurate versus inaccurate alerts on investment in fungi-

cide and fertilizer. The naive OLS estimates and the instrumented parameters are

presented together. In the naive specification, the effect of self-reported accurate and

inaccurate signals—whether the farmer observed a false negative—are equivalent. In-

strumenting for the accuracy of the signal produces a divergent estimate, where ac-

curate signals induce greater investment, while inaccurate signals do not. The instru-

mented effect of receiving an accurate signal leads to an increase in expenditures on

fungicide and fertilizer by approximately 22% and 18%, respectively, while the effect
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Table 7: Effect of GEOPOTATO Accuracy on Input Usage

Fungicide (tk) Fungicide (N) Fertilizer (tk)

OLS IV OLS IV OLS IV

GEOPOTATO

Accurate signal 0.11∗∗∗ 0.23∗∗∗ 0.05 0.16∗∗ 0.06∗ 0.14∗

(0.04) (0.08) (0.03) (0.07) (0.04) (0.08)
Inaccurate signal 0.07∗∗ −0.07 0.04 −0.04 0.10∗∗∗ 0.03

(0.03) (0.09) (0.03) (0.07) (0.04) (0.08)
Land (ln acres) 0.86∗∗∗ 0.85∗∗∗ 0.18∗∗∗ 0.17∗∗∗ 0.96∗∗∗ 0.96∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01)
Female −0.18 −0.15 0.09 0.12 0.08 0.10

(0.15) (0.15) (0.12) (0.12) (0.16) (0.16)
Experience (ln years) 0.02 0.02 −0.00 −0.00 0.01 0.01

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
No schooling −0.02 −0.02 0.01 0.01 −0.01 −0.01

(0.05) (0.05) (0.04) (0.04) (0.04) (0.04)

Accurate=Inaccurate (p-val) 0.32 0.07 0.74 0.08 0.51 0.47
Upazila FE Yes Yes Yes Yes Yes Yes
Seasonal trend Yes Yes Yes Yes Yes Yes
Adj. R2 0.71 0.71 0.14 0.13 0.78 0.78
Observations 1958 1958 1958 1958 1958 1958

Fertilizer and fungicide expenditures are transformed with the inverse hyperbolic sine.
Cluster robust standard errors at the village level (G = 407).
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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of inaccurate signals is not statistically significant.

Because farmers apply fertilizer in a sequence of four distinct rounds, I can estimate

the impact of an (instrumented) accurate signal on each round of investment. The re-

sults in table 8 show that farmers with accurate and inaccurate signals apply fertilizer

in similar amounts as those in the spillover and control groups during the preparatory

and initial rounds. As farmers learn about the accuracy of GEOPOTATO alerts over

the course of the season, however, their behavior diverges. Farmers receiving accu-

rate alerts invest significantly more in fertilizer, while those receiving inaccurate alerts

reduce their investment.

Table 8: IV Estimates of GEOPOTATO Accuracy on Fertilizer Usage by Round

Dep. Var = asinh(fertilizer taka)

Preparation 1st round 2nd round 3rd round

GEOPOTATO

Accurate signal 0.17∗ −0.10 1.51∗∗∗ 2.77∗∗∗

(0.09) (0.20) (0.46) (0.47)
Inaccurate signal −0.01 0.40∗ −1.31∗∗ −2.52∗∗∗

(0.09) (0.20) (0.58) (0.49)
Land (ln acres) 0.97∗∗∗ 0.97∗∗∗ 1.55∗∗∗ 0.95∗∗∗

(0.02) (0.04) (0.07) (0.09)
Female 0.05 0.43∗ 0.91 0.83

(0.14) (0.23) (0.71) (1.01)
Experience (ln years) 0.02 0.10 −0.21∗ 0.01

(0.02) (0.06) (0.12) (0.13)
No schooling −0.05 −0.19 0.36 0.19

(0.05) (0.15) (0.27) (0.28)

Upazila FE Yes Yes Yes Yes
Time trend Yes Yes Yes Yes
Observations 1958 1958 1958 1958
Adj. R2 (full) 0.72 0.28 0.18 0.03
Adj. R2 (proj) 0.70 0.25 0.15 0.02

Fertilizer expenditures are transformed with the inverse hyperbolic sine.
Cluster robust standard errors at the village level (G = 407).
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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The timing of the effect of GEOPOTATO on investment between the first and

second rounds of fertilizer application suggests two explanations. First, farmers are

delaying their investment until they can verify that GEOPOTATO alerts are accurate.

This is why farmers’ investment in the first two rounds of application is not statistically

different from those in the control and spillover groups. Only once farmers realize their

alerts are accurate later in the growing season, and therefore their risk of loss to blight

is lower, do farmers invest more. The change in investment can also be explained by

differential losses. Figure 8 shows that farmers with accurate signals realize significantly

fewer losses to blight. So farmers with accurate signals would have more of their crop in

which to invest. Differential losses contribute to the divergence in investment patterns

between farmers receiving accurate and inaccurate signals, shown in figure 9, but the

magnitude of change in investment is too large to be purely a function of the shift in

likelihood of losses from “little” to “almost none.”

6 Discussion

The premise of agricultural interventions that reduce farmer risk is that they will induce

farmers to invest more heavily in their land and their crops. Unlocking this investment

is considered key to productivity gains that can lead to the structural transformation of

agrarian economies. Many interventions that aim to reduce risk, like index insurance,

fail to find widespread adoption because farmers cannot easily evaluate the chance

that they will receive a payout in the event of a loss. In my study of potato farmers

in Bangladesh, I find a rational response to a simple, relatively cheap, and easily

scalable technology: farmers invest more when it works, and less when it does not.

GEOPOTATO alerts provide multiple opportunities for farmers to learn whether they

are accurate.
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Figure 9: Effect of Signal Accuracy by Fertilizer Application by Round

Notes: Effect of receiving and accurate or inaccurate signal on fertilizer invest-
ment. Estimated coefficients are shown with 95% confidence intervals, taken from
table 8, where receiving an accurate or inaccurate signal is instrumented with as-
signment to receive alerts and the farmer’s deviation from the registered sowing
date.
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My study of the GEOPOTATO alert system highlights that the value of agricultural

technology interventions are limited by whether or not farmers can learn about their

properties. Even technologies that offer a significant benefit to the average farmer may

go unused if a farmer cannot verify that it will help them.
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A Prices and Profits

A.1 Prices

Farmers received vastly different prices for their crop. Prices varied over the course

of the season, falling by approximately 20% from their peak at the start of the year.

Figure 10a shows the decline in price received during the season, as more farmers

harvest their crop and supply increases. Even within each harvest week, prices are

hugely dispersed. The primary reason for this volatility in prices is the lack of futures

markets: farmers bring their potatoes to nearby towns where they receive spot prices

from local middlemen. Farmers can only conduct limited negotiations in advance, and

are often reluctant to store their crops.

Figure 10: Crop prices
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Notes: Average price received by harvest date is fit with a natural cubic spline
and a 95% confidence interval. Prices are only recorded for farmers who reported
selling their crop at the time of the survey. Some farmers chose to eat their crop,
others to store to sell at a later date.
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A.2 Profits

Profits are measured as the revenue the farmer received less the cost of fungicide,

fertilizer, and labor. In the case where the farmer did not report a sale, the median

price for their upazila-harvest week is used to compute the present economic value of

their harvest. Larger farms had higher profits and losses. Figure 11 fits a cubic spline

of the amount of land used and profits farmers who lost money and made money,

respectively. The average profit was 63,000 taka, or $743 USD. However, splitting the

sample between those who lost and made a profit, the average loss was 21,500 taka, or

$255 USD, and the average gain was approximately 82,500 taka, or $975 USD.

Figure 11: Total Profits by Farm Size
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